top of page
Search

Body Heat 2010 Cast



The producers wanted Kasdan to cast a star, but he insisted on William Hurt, a stage actor who had just made his film debut in Altered States (1980). Kasdan cast another unknown, Kathleen Turner, as Matty, and Ted Danson as one of Ned's colleagues. (Danson was offered the part of Sam Malone on Cheers while filming Body Heat.)[32] The heat-centric story was originally set in New Jersey, but an actor's strike delayed production until December, so the location was moved to Miami.[32]




Body Heat 2010 Cast



It was the first film he directed from another writer's script, and starred Kevin Kline as pizzeria owner and serial cheater, Joey, and Tracy Ullman as his wife, Rosalie. The ensemble cast included River Phoenix, Joan Plowright, William Hurt, and Keanu Reeves. The film was shot in Tacoma, Washington.


These aliens have a cloaking technology that makes them largely invisible,while they themselves can see infra-red and detect body heat. This means the Earthlings have very little chance of survival. The hounds that they use for hunting the men and the lone woman are a cross between a dinosaur and wolf,just another of the weapons at their disposal.


Mr U Spangenberg 2010 "Development of a robust output-only strain based damage detection technique for wing-like structures, requiring a minimum number of sensors"In recent years more emphasis has been placed on in-situ condition based monitoring of engineering systems and structures. Aerospace components are manufactured from composite materials more often. Structural health monitoring (SHM) systems are required in the aerospace industry to monitor the safety and integrity of the structure and will ensure that composites reach its full potential within the industry. Damage detection techniques form an integral part of such SHM systems.With this work a damage detection technique is developed for intended eventual use on composite structures, but starting first on isotropic structures. The damage mechanism that is of interest is delamination damage in composites. A simple numerical equivalent is implemented here however. Two damage indicators, the strain cumulative damage factor (SCDF) and the strain-frequency damage level (SFDL) are introduced. The respective damage indicators are calculated from output-only strain and acceleration response data.The effectiveness of the system to detect damage in the structure is critically evaluated and compared to other damage detection techniques such as the natural frequency method. The sensitivity to damage and performance of both these indicators is examined numerically by evaluating two deterministic damage cases. The numerical study is enhanced through the use of an updated finite element model. The minimum number of sensors capable of detecting the presence and locate damage spatially is determined from numerical simulations. Monte Carlo type analysis is performed by letting the damaged area vary stochastically and calculating the respective damage indicators.The model updating procedure from measured mobility frequency response functions (FRFs) is described. The application of the technique to real structures is examined experimentally. Two test structures with two different damage scenarios are examined.The spatial location and presence of damage can be established from both the SCDF and SFDL values, respectively. The spatial location obtained from the SCDF values corresponded to the known damage location for both the numerical and experimental study. The SFDL proved to be more sensitive than the natural frequency method and could potentially be used to calculate the level of damage within the structure.Supervisor: Prof PS HeynsMr O I Ogunronbi 2010 "Maximum heat transfer rate density from a rotating multiscale array of cylinders"This work investigated a numerical approach to the search of a maximum heat transfer rate density (the overall heat transfer dissipated per unit of volume) from a two-dimensional laminar multi scale array of cylinders in cross-flow under an applied fixed pressure drop and subject to the constraint of fixed volume. It was furthermore assumed that the flow field was steady state and incompressible. The configuration had two degrees of freedom in the stationary state, that is, the spacing between the cylinders and the diameter of the smaller cylinders. The angular velocity of the cylinders was in the range . Two cylinders of different diameters were used, in the first case, the cylinders were aligned along a plane which lay on their centre lines. In the second case, the cylinder leading edge was aligned along the plane that received the incoming fluid at the same time. The diameter of the smaller cylinder was fixed at the optimal diameter obtained when the cylinders were stationary. Tests were conducted for co-rotating and counter-rotating cylinders. The results were also compared with results obtained in the open literature and the trend was found to be the same. Results showed that the heat transfer from a rotating array of cylinders was enhanced in certain cases and this was observed for both directions of rotation from an array which was aligned on the centreline. For rotating cylinders with the same leading edge, there is heat transfer suppression and hence the effect of rotation on the maximum heat transfer rate density is insignificant. This research is important in further understanding of heat transfer from rotating cylinders, which can be applied to applications ranging from contact cylinder dryers in the chemical processes industry and rotating cylinder electrodes to devices used for roller hearth furnaces.Supervisors: Dr T Bello-Ochende and Prof J P Meyer


Mr R Badenhorst 2010 "Computational Fluid Dynamics Analysis on Improving the Drying Uniformity of Mango Tunnel Dryers"Industrial tray-air dryers are increasingly used for the drying of agricultural products. The main drawback of these dryers is the non-uniform velocity distribution in the drying zone resulting in a non-uniform drying of the product. Computational Fluid Dynamics (CFD) software was implemented to predict and decrease the non-uniform velocity distribution of various mango dryer configurations. Tunnel dryers in commercial use were used to obtain experimental data. The CFD results were correlated with the test data.Trolley and tray tunnel dryers provide a relative simple, low capital intensive and versatile method for drying a wide range of products. Artificial drying has the advantage of controlled drying conditions compared to traditional sun drying. It provides the means of adding value to fruit with skin blemishes and to obtain a product, which is far less perishable. The main focus of every tunnel design is to increase the evaporation rate without increasing the energy required to do so. Many studies focus on the mango structure and food dehydration principles that influence the uniform drying product with the assumption that the airflow over the produce is uniform. Few have been conducted on the air movement inside industrial dryers. CFD analysis predicts the airflow without influencing the airflow pattern compared to the measuring equipment inside test dryers.The experimental data was obtained from an empty dryer without a flow diverter. This was compared to dryer with the flow diverter included and compared to a dryer with the trolleys, trays and mango slices included. The test results showed that turbulence created by this configuration, still played a major role in the non-uniform velocity distribution along the drying zone of the tunnel. The inclusion of a flow diverter did however dampen the swirl effect of the main fan. Measuring the velocity distribution was practically difficult with the handheld devices used, which influenced the accuracy of the measurements taken. This justified the CFD analysis in order to better visualise and predict the airflow pattern inside the dryer.Airpak 2.1, a CFD analysis software program, was used to create models and simulate the dryers used in obtaining the experimental data. Applying the automated mesh generation of the program, the design engineer could without using too much computational effort, create a CFD model which is mesh independent. Initial results were obtained by implementing the indoor zero-equation model to solve the Reynolds-Averaged Navier Stokes (RANS) equation. These results were then used as initial input for numerically solving the mass and momentum equations of the flow field by using the more accurate two-equation RNG model.The total average speed CFD results of the sections in the drying zone (without mangoes and trolleys) of the dryer without a flow diverter was 11.2% higher compared to the test results. It was 14% higher for the dryer with the flow diverter included. The dryer with the mangoes, trays, trolleys and flow diverter showed a large difference where the total average speed of the CFD analysis was 49% higher compared to the test results. The CFD analysis showed that the coefficient of variance (CV) of the dryer with the flow diverter (mangoes and trolleys included) was 3% lower compared to the dryer without one.Various dryer configurations were analysed using the CFD software to investigate what the best combination of flow diverter, vanes and blanking-off plates would be. A dryer configuration where flow diverters (Up-and-downstream of the main fan) above the false ceiling and inside the drying zone was analysed. A 16% decrease in terms of the CV value was obtained compared to the dryer with just the flow diverter downstream of main fan above the false ceiling. There was however a large region of swirl upstream of the main above the false ceiling resulting in a larger loss of heated air through the outlet fan before it reached the drying zone.The cost of manufacturing a simple vane and flow diverter for an existing dryer is 4% of the initial building costs (excluding the initial cost of the trolleys). The overall drying uniformity of this dryer is improved according to the CFD analysis by 7%. A cost analysis (taking into account the 15 year life cycle of a dryer) in terms of the energy requirement to evaporate water from the drying zone, showed that the dryer with the flow diverter was 6% less expensive to run on a yearly basis.Supervisor: Prof L Liebenberg 2ff7e9595c


 
 
 

Recent Posts

See All

Comments


bottom of page